|| Jai Sri Gurudev||

Sri Adichunchanagiri Shikshana Trust (R) ADICHUNCHANAGIRI UNIVERSITY

BGS Institute of Technology

B. E. CIVIL ENGINEERING

Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

18CV63	Course Code	HYDROLOGY AND IRRIGATION ENGINEERING	Course Title	VI	Semester		
4	Credits	3-1-0-4	L-T-P- TL*	50 Hours	Teaching Period		
100 Marks	Total	60 Marks	SEE*	40 Marks	CIE*		
*NOTE: L – Lecture; T – Tutorial; P – Practical; TL – Total;							
CIE – Continuous Internal Evaluation; SEE – Semester End Examination							
Course Learning Objectives:							
	ill enable stud						
		01 1 1 1			1 700 1. *		

	г		
Course Learning Objectives: This course will enable students to			
	Teaching		
1. Understand the concept of hydrology and components of hydrologic cycle such as			
precipitation, infiltration, evaporation and transpiration.			
2. Quantify runoff and use concept of unit hydrograph.	S		
3. Demonstrate different methods of irrigation, methods of application of water and			
irrigation procedure.			
4. Design canals and canal network based on the water requirement of various crops.			
5. Determine the reservoir capacity.			
Module-1			
Hydrology: Introduction, Importance of hydrology, Global and Indian water availability,			
Practical application of hydrology, Hydrologic cycle (Horton's) qualitative and	10Hours		
engineering representation.			
Precipitation: Definition, Forms and types of precipitation, measurement of rain fall			
using Symon's and Syphon type of rain gauges, optimum number of rain gauge stations,			
consistency of rainfall data (double mass curve method), computation of mean rainfall,			
estimation of missing data, presentation of precipitation data, moving average curve,			
mass curve, rainfall hyetographs.			
Module-2			
Losses: Evaporation: Introduction, Process, factors affecting evaporation, measurement			
using IS class-A Pan, estimation using empirical formulae (Meyer's and Rohwer's			
equations) Reservoir evaporation and control			
Evapo-transpiration : Introduction, Consumptive use, AET, PET, Factors affecting			
Measurement, Estimation by Blaney-Criddle equation,			
Infiltration : Introduction, factors affecting infiltration capacity, measurement by double			
ring infiltrometer, Horton's infiltration equation, infiltration indices.			
Module-3			
Runoff : Definition, concept of catchment, factors affecting runoff, rainfall – runoff	1011		
relationship using regression analysis.	10Hours		
Hydrographs : Definition, components of hydrograph, base flow separation, unit			
Tyurographs. Definition, components of nyurograph, base now separation, unit	1		

hydrograph, assumption, application and limitations, derivation from simple storm	
hydrographs, S curve and its computations, Conversion of UH of different durations	
Module-4	
Irrigation : Definition. Benefits and ill effects of irrigation. System of irrigation: surface	10Hours
and ground water, flow irrigation, lift irrigation, Bandhara irrigation. Water Requirements	,
of Crops: Duty, delta and base period, relationship between them, factors affecting duty	
of water crops and crop seasons in India, irrigation efficiency, frequency	
of irrigation.	
Module-5	
Canals: Types of canals. Alignment of canals. Definition of gross command area, cultural	
command area, intensity of irrigation, time factor, crop factor. Unlined and lined canals.	10Hours
Standard sections. Design of canals by Lacey's and Kennedy's method.	
Reservoirs: Definition, investigation for reservoir site, storage zones determination of	
storage capacity using mass curves, economical height of dam.	

Course outcomes:

After studying this course, students will be able to:

- 1. Understand the importance of hydrology and its components. 2
- 2. Measure precipitation and analyze the data and analyze the losses in precipitation.
- 3. Estimate runoff and develop unit hydrographs.
- 4. Find the benefits and ill-effects of irrigation.
- 5. Find the quantity of irrigation water and frequency of irrigation for various crops.
- 6. Find the canal capacity, design the canal and compute the reservoir capacity.

Question paper pattern:

- The question paper will have ten full questions carrying equalmarks.
- Each full question will be for 20marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under amodule.
- The students will have to answer fivefull questions, selecting one full question from each module.

Textbooks:

- 1. K. Subramanya, "Engineering Hydrology", Tata McGraw Hill Publishers, New Delhi.
- 2. Jayarami Reddy, "A Text Book of Hydrology", Lakshmi Publications, New Delhi.
- 3. Punmia and LalPandey, "Irrigation and Water Power Engineering" Lakshmi Publications, New Delhi

Reference Books:

- 1. H.M. Raghunath, "Hydrology", Wiley Eastern Publication, New Delhi.
- 2. Sharma R.K., "Irrigation Engineering and Hydraulics", Oxford & IBH Publishing Co., New Delhi.
- 3. VenTe Chow, "Applied Hydrology", Tata McGraw Hill Publishers, New Delhi.
- 4. Modi P.N "Water Resources and Water Power Engineering"-. Standard book house, Delhi.
- 5. Garg S.K, "Irrigation Engineering and Hydraulic Structures" Khanna publications, New Delhi